Leilac 2

LEILAC 2 – Scaling Up Low-Carbon Solutions

October 2021

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654465 and No 884170

Cement's unavoidable CO2 emissions

The situation

- Cement and lime are responsible for around 8% of global CO₂ emissions
- Majority of the CO₂ emissions are unavoidable
- CCS will need to be applied to most cement and lime plant to meet global emission reduction target
- The cement and lime industries are under intense competitive and cost pressures

The current collective objective facing industry and government is threefold:

- to maintain economic prosperity,
- meet cement and lime market demand,
- dramatically lowering CO₂ emissions.

The vision

The LEILAC Projects' Vision is to meet that great challenge as quickly as possible: providing a solution without significant impact on operability, capital intensity or efficiency

The CO₂ Solution CALIX'S CORE TECHNOLOGY

Using Calix's LEILAC technology the released process CO₂ is not contaminated.

This carbon separation process does not require additional energy or chemicals

CO₂ Capture When processing limestone, cement meal, or magnesite, gas exhaust is high quality CO₂

"LEILAC" (Low Emissions Intensity Lime and Cement)

No theoretical energy penalty
High Purity CO₂

(Target lower operating costs

S Comparable capital costs – existing plants

Heat / fuel agnostic

A New Type of Kiln

10 patent families covering core technology and applications in CO₂ mitigation

>€44m has been invested to date in developing the technology, with a further €16m already committed

Technology – Simply replaces part of the existing cement production process – no additional chemicals or processes or energy required to separate unavoidable CO2

Impact

Leilac2

LEILAC1 Pilot plant

- Calcine cement meal and capture the CO_2 created from around 5% of a full plant's throughput.
- Confirm that there would be a similar or better product quality
- Efficiently capture over 95% of CO₂ process emissions.
- Evaluation and mitigation of the major scale-up technical risks.

LEILAC2 Demonstration plant

- Develop a module (similar footprint to the Pilot) that can calcine cement meal – and capture the CO₂ created - from around 20% of a full plant's throughput.
- Prove low-impact retrofit approach
- Develop the use of variety of energy sources, including electricity.

Commercial roll-out

- Use of modules of this new calciner design to separate unavoidable CO₂ emissions at low cost for 100% of a full plant's throughput.
- A good quality CO₂ stream and product.
- Flexible options for a low-impact retrofit or newbuild.
- Complements other CO₂ abatement technologies (any other capture system for fuel emissions - or using renewable energy such hydrogen, biomass or electricity
- Blue-print design for local engineering firms to implement globally

€12m H2020 grant plus € 9m in-kind in 2016

- 5-year project, start in 2016
- Direct capture of process-related CO₂
- 95% capture rate CO₂

Pilot plant in HeidelbergCement's plant at Lixhe, Belgium

Pilot operations have been very successful and proven the core technology:

- Built on time and on budget
- Successfully operating
- 95+% CO₂ purity
- No impact on host plant's operations or emissions levels
- Core technology reliability and consistency proven

€16m H2020 grant plus €17m in-kind in 2020, and industrial funding

Focused on proving ability to retrofit, integration, a x4 scale up and enhanced performance.

Capacity to capture 100kpa of CO_2 - 25% of a typical cement plant's process emissions - in a replicable module

tower (it will undertake 20 % of the duty of the current tower).

Initial concept for sizing/comparison with the host plant – if it sat alongside the existing calciner

.........

Leilac2

Global Cement and Concrete Association

• The team matters.

- A large scale problem will need a large team how do you keep a large team focussed?
- Everyone at all levels needs to be engaged.
- Communication is critical R&D produces learnings that force change can be disruptive unless everyone is on board.
- Defining the problem is step 1 scale up isn't just increasing the size of the equipment.
- Work to maximise the up-front development as much as possible.

www.project-leilac.eu - now in German, Spanish, French, Dutch and English

LATEST NEWS

CEMEX joins LEILAC-2 project HeidelbergCement hosts the LEILAC Demonstration plant Conference 2020

11