Introducing ANICA

What is ANICA?
ANICA is an ACT project focused on developing novel integration concepts of the state-of-the-art indirectly heated carbonate lopping (IHCaL) process in cement and lime production. The project aims at lowering the energy penalty and CO₂ avoidance costs for CO₂ capture from lime and cement plants. Within the 36 months, the project brings the IHCaL technology to a high level of technical maturity by carrying out long-term pilot tests in industry-relevant environments and deploying accurate 1D and 3D simulations.

The ANICA consortium is composed of 12 partners from Germany, United Kingdom and Greece.

The Motivation
In order to decrease the global CO₂ emissions, sustainable and economical processes need to be applied in the energy and carbon-intense industry sectors. The production of lime and cement is one of the major sources of CO₂ emissions in the industry sector. During the production of lime and cement, natural Calcium Carbonate (CaCO₃) is calcinated to Calcium Oxide (CaO). The necessary heat for calcination is generated by combustion of fossil fuels and waste. Process and combustion CO₂ from lime-based production accounts for around 8% of global fossil CO₂ emissions. These CO₂ emissions can be efficiently captured with the IHCaL process.

The Indirectly Heated Carbonate Lopping (IHCaL) Process
Carbonate Lopping (Cal), also known as calcium looping, is a CO₂-capture technology in which limestone is used as the sorbent that captures CO₂. The indirectly heated carbonate lopping (IHCaL) process is a variation of Cal in which the heat is provided externally, thus avoiding the necessity of an air separation unit (ASU) and therefore achieving higher efficiencies and lower CO₂ avoidance costs. The main components involved in the process are the combustor that provides thermal energy for the separation; the carbonator, where the CO₂ is captured by reacting into CaCO₃; and the calciner, where the CaO is regenerated and the CO₂ is released.

Project Objectives
- Integrating IHCaL into lime and cement plants.
- Testing at 300 kWth pilot plant under realistic conditions.
- Proving feasibility of utilizing of spent sorbent in the processes.
- Developing novel concepts of the IHCaL reactor system.
- Generating risks assessments, economic performance analysis, and environmental impact analysis of the full process.
- Designing a 20 MWth demonstration plant.

ANICA Project Highlights
- Synergic integration between IHCaL and cement and lime production processes.
- Utilization of raw material for lime and cement production as sorbent to reduce costs and environmental impact.
- Utilization of cheap waste fuels of biogenic sources to achieve net negative emissions and reduce costs.
- Avoidance of the air separation unit (ASU) within the IHCaL process, which yields lower energy penalties and lower CO₂ avoidance costs.
- Operation at high temperatures to efficiently generate power.

To receive regular updates on the project, subscribe to the biannual newsletter.